Skip to main content

JDK 9

The goal of this Project is to produce an open-source reference implementation of the Java SE 9 Platform defined by JSR 379 in the Java Community Process.
The schedule and features of this release are proposed and tracked via the JEP Process, as amended by the JEP 2.0 proposal.

Schedule

2016/05/26Feature Complete
2016/12/22Feature Extension Complete
2017/01/05Rampdown Start
2017/02/09All Tests Run
2017/02/16Zero Bug Bounce
2017/03/16Rampdown Phase 2
2017/07/06Final Release Candidate
2017/07/27General Availability
The milestone definitions are the same as those for JDK 8, with the addition of:
  • Feature Extension Complete — The date by which JEPs and small enhancements that have been granted extensions via the FC extension-request process must be integrated into the master forest.

Status

We achieved the Feature Extension Complete milestone in December 2016. The overall feature set is now frozen. It is highly unlikely that any further JEPs will be targeted to the release.
We're now in the first phase of the rampdown process, in which we aim to fix the bugs that need to be fixed and understand why we're not going to fix some bugs that perhaps ought to be fixed. Please see the RDP 1 page for details.
Small enhancements to new features will be considered, but the bar is now much higher. Please request approval for such enhancements via the existing FC extension-request process. Low-risk enhancements that add small bits of missing functionality or improve usability may be approved, especially when justified by developer feedback. Enhancements that add significant new functionality will require very strong justification. Enhancements to tests or documentation do not require advance approval.

Features

102: Process API Updates
110: HTTP 2 Client
143: Improve Contended Locking
158: Unified JVM Logging
165: Compiler Control
193: Variable Handles
197: Segmented Code Cache
199: Smart Java Compilation, Phase Two
200: The Modular JDK
201: Modular Source Code
211: Elide Deprecation Warnings on Import Statements
212: Resolve Lint and Doclint Warnings
213: Milling Project Coin
214: Remove GC Combinations Deprecated in JDK 8
215: Tiered Attribution for javac
216: Process Import Statements Correctly
217: Annotations Pipeline 2.0
219: Datagram Transport Layer Security (DTLS)
220: Modular Run-Time Images
221: Simplified Doclet API
222: jshell: The Java Shell (Read-Eval-Print Loop)
223: New Version-String Scheme
224: HTML5 Javadoc
225: Javadoc Search
226: UTF-8 Property Files
227: Unicode 7.0
228: Add More Diagnostic Commands
229: Create PKCS12 Keystores by Default
231: Remove Launch-Time JRE Version Selection
232: Improve Secure Application Performance
233: Generate Run-Time Compiler Tests Automatically
235: Test Class-File Attributes Generated by javac
236: Parser API for Nashorn
237: Linux/AArch64 Port
238: Multi-Release JAR Files
240: Remove the JVM TI hprof Agent
241: Remove the jhat Tool
243: Java-Level JVM Compiler Interface
244: TLS Application-Layer Protocol Negotiation Extension
245: Validate JVM Command-Line Flag Arguments
246: Leverage CPU Instructions for GHASH and RSA
247: Compile for Older Platform Versions
248: Make G1 the Default Garbage Collector
249: OCSP Stapling for TLS
250: Store Interned Strings in CDS Archives
251: Multi-Resolution Images
252: Use CLDR Locale Data by Default
253: Prepare JavaFX UI Controls & CSS APIs for Modularization
254: Compact Strings
255: Merge Selected Xerces 2.11.0 Updates into JAXP
256: BeanInfo Annotations
257: Update JavaFX/Media to Newer Version of GStreamer
258: HarfBuzz Font-Layout Engine
259: Stack-Walking API
260: Encapsulate Most Internal APIs
261: Module System
262: TIFF Image I/O
263: HiDPI Graphics on Windows and Linux
264: Platform Logging API and Service
265: Marlin Graphics Renderer
266: More Concurrency Updates
267: Unicode 8.0
268: XML Catalogs
269: Convenience Factory Methods for Collections
270: Reserved Stack Areas for Critical Sections
271: Unified GC Logging
272: Platform-Specific Desktop Features
273: DRBG-Based SecureRandom Implementations
274: Enhanced Method Handles
275: Modular Java Application Packaging
276: Dynamic Linking of Language-Defined Object Models
277: Enhanced Deprecation
278: Additional Tests for Humongous Objects in G1
279: Improve Test-Failure Troubleshooting
280: Indify String Concatenation
281: HotSpot C++ Unit-Test Framework
282: jlink: The Java Linker
283: Enable GTK 3 on Linux
284: New HotSpot Build System
285: Spin-Wait Hints
287: SHA-3 Hash Algorithms
288: Disable SHA-1 Certificates
289: Deprecate the Applet API
290: Filter Incoming Serialization Data
292: Implement Selected ECMAScript 6 Features in Nashorn
294: Linux/s390x Port
295: Ahead-of-Time Compilation
297: Unified arm32/arm64 Port
298: Remove Demos and Samples

Comments

Popular posts from this blog

Mockito interview Questions

1.       Question 1. What Is Mockito? Answer : Mockito allows creation of mock object for the purpose of Test Driven Development and Behavior Driven development. Unlike creating actual object, Mockito allows creation of fake object (external dependencies) which allows it to give consistent results to a given invocation. 2.       Question 2. Why Do We Need Mockito? What Are The Advantages? Answer : Mockito differentiates itself from the other testing framework by removing the expectation beforehand. So, by doing this, it reduces the coupling. Most of the testing framework works on the "expect-run-verify". Mockito allows it to make it "run-verify" framework. Mockito also provides annotation which allows to reduce the boilerplate code. 3.       Question 3. Can You Explain A Mockito Framework? Answer : In Mockito, you always check a particular class. The dependency in that class is injected using m...

JAVA Expert Interview Questions Answers 2017

Java Basics ::  Interview Questions and Answers Home  »  Interview Questions  »  Technical Interview  »  Java Basics  » Interview Questions 1.     What is the difference between a constructor and a method? A constructor is a member function of a class that is used to create objects of that class. It has the same name as the class itself, has no return type, and is invoked using the new operator. A method is an ordinary member function of a class. It has its own name, a return type (which may be void), and is invoked using the dot operator. 2.     What is the purpose of garbage collection in Java, and when is it used? The purpose of garbage collection is to identify and discard objects that are no longer needed by a program so that their resources can be reclaimed and reused. A Java object is subject to garbage collection when it becomes unreachable to the program in which it is used. 3.  ...

Java Example Program to Convert List to Set

import java.util.ArrayList; import java.util.HashSet; import java.util.Set; public class ListToSet {  /**   * @author Amarjit Kumar   * @category interview questions   *   * Description: Convert List to set in java with example program   *   */  public static void main(String[] args) {   ArrayList<String> arrList= new ArrayList<>();   arrList.add("Java");   arrList.add("Java");   arrList.add("List to String");   arrList.add("Example Program");   Set<String> strSet = new HashSet<String>(arrList);   System.out.println(strSet);   System.out.println(arrList);  } } /*  * Java program to convert list to set. Convert ArrayList of string to HashSet  * in java example program How to convert List to Set in java Set<String> strSet  * = new HashSet<String>(arrList); HashSet having a constructor which will take  * list as an ar...